Shopping Cart

No products in the cart.

Machine Learning for Imbalanced Data (1 ed)

Original price was: $49.99.Current price is: $5.00.

  • Author: Kumar Abhishek, Anshul Yadav
  • Language: ‎English
  • Format: ‎PDF
  • Pages: 344 pages
SKU: BF-0502 Categories: , Brand:

Machine Learning for Imbalanced Data: Tackle imbalanced datasets using machine learning and deep learning techniques 1st Edition

Take your machine learning expertise to the next level with this essential guide, utilizing libraries like imbalanced-learn, PyTorch, scikit-learn, pandas, and NumPy to maximize model performance and tackle imbalanced data

Key Features

  • Understand how to use modern machine learning frameworks with detailed explanations, illustrations, and code samples
  • Learn cutting-edge deep learning techniques to overcome data imbalance
  • Explore different methods for dealing with skewed data in ML and DL applications

Book Description

Machine learning practitioners often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to improve model performance significantly.

Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods.

As you progress, you’ll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that’ll demonstrate the practical implementation of each technique.

By the end of this book, you’ll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.

What you will learn

  • Use imbalanced data in your machine learning models effectively
  • Explore the metrics used when classes are imbalanced
  • Understand how and when to apply various sampling methods, such as oversampling and undersampling
  • Apply data-based, algorithm-based, and hybrid approaches to deal with class imbalance
  • Combine and choose from various options for data balancing while avoiding common pitfalls
  • Understand the concepts of model calibration and threshold adjustment in the context of dealing with imbalanced datasets

Who this book is for

This book is for machine learning practitioners who want to effectively address the challenges of imbalanced datasets in their projects. Data scientists, machine learning engineers/scientists, research scientists/engineers, and data scientists/engineers will find this book helpful. Though complete beginners are welcome to read this book, some familiarity with core machine learning concepts will help readers maximize the benefits and insights gained from this comprehensive resource.

Table of Contents

  1. Introduction to Data Imbalance in Machine Learning
  2. Oversampling Methods
  3. Undersampling Methods
  4. Ensemble Methods
  5. Cost-Sensitive Learning
  6. Data Imbalance in Deep Learning
  7. Data-Level Deep Learning Methods
  8. Algorithm-Level Deep Learning Techniques
  9. Hybrid Deep Learning Methods
  10. Model Calibration
  11. Appendix

Reviews

There are no reviews yet.

Be the first to review “Machine Learning for Imbalanced Data (1 ed)”

Your email address will not be published. Required fields are marked *

Secure Payments
Securing online payments is a shared responsibility, and everyone can contribute their share.
Free Shipping
You get unlimited free shipping on eligible items with Electro eBooks, with no minimum spend.
Gifts & Sales
Sales gifts are helpful tools that are often used to show appreciation to clients for purchasing a product.
24/7 Support
Our customer care service is offered in the form of 1st or 2nd level support.
Electro eBooks W 170

Important updates waiting for you!

Subscribe and grab 20% OFF!
Subscription Form

Machine Learning for Imbalanced Data (1 ed)

Original price was: $49.99.Current price is: $5.00.